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ABSTRACT

Convolution integral equations have a simple representation in the
form of a Laplace transform, and so solution follows by transform inversion.
Usually, the solution is expressed as an infinite integral which can only be
evaluated by numerical integration. Often, the transform involves the ratio

of functions of hypergeometric type. Is rvara (sz_ "Th.. J X" Tle
and the T-rqemud," J-u..---t-. ~ ~7 1d' nelr . .. g! ....

H. 1y-approximations to an inverse Laplace transform~,hen the trans-
form, which involves the exponential integral, is approximated by rational
functions. The approximate solution is a sum of exponential functions, and
numerics are presented to show the efficiency of our technique.
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INTRODUCTIOII

Numerous problems in applied mathematics require the solution of
integral equations of the convolution type. It is well known that equations
of this kind have a rather simple representation in the form of a Laplace
transform so that the solution depends upon finding an inverse Laplace trans-
form. Now it may be that the Laplace transform involves functions for which
rational approximations are available, and it is of interest to study the
nature of approximations to inverse Laplace transforms when the transforms
are approximated by rational functions.

In previous studies [1,2], we have been concerned with rational
approximations to higher transcendental functions. The approximations are,
of course, useful to evaluate the transcendental functions as in the sense of
table making. However, a more cogent reason for investigating such approxi-
mations is that they should be useful, for example, to invert Laplace trans-
forms, and in general to further simplify the evaluation of mathematical solu-
tions to applied problems already expressed in closed form.

In two recent studies [3,4], we have investigated problems in ap-
plied mechanics and aerodynamics whose solution requires inversion of a
Laplace transform which involves ratios of functions of hypergeometric type.
In the cases studied, the hypergeometric functions were the modified Bessel
functions of the second kind Kv(z) . With the aid of results developed in
[2], we derived economic approximations for the inverse functions. In the
present paper, we present a similar study where the transcendent involved is
the exponential integral.

I. SOLUTION OF A CONVOIUTION INTEGRAL EQUATION

For our particular study, we take an example from a paper by
Friedlander [5] which requires the solution of

z

f k(z-t)g(t)dt = g(z)+f(z)
0

k(z) = 2f(z) = -2(z+2) 2  . (1.1)

Manuscript released by the author December 1962 for publication as an ARL
Technical Report.
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Using the theory of Laplace transforms, we have

G(p) =--Fp , K(p) --2F(p)

F(p) = - 1-pEi(-2p) , -Ei(-2p) t-le-tdt
2

G(p) = 2pe 421 2p) (1.2)

Here F(p) , G(p) and K(p) are Laplace transforms of f(z), g(z) and
k(z) , respectively. Also -Ei(-z) is the usual notation for the exponential
integral. By the inversion formula for Laplace transforms,

c+iw
g(z) 1 .. ePZG(p)dp , (1.3)

where c > 0 and c lies to the right of all singularities of G(p)

In the remainder of this section, we develop some results which lead
to an integral representation of g(z) . The results obtained are also useful
in connection with our process for approximating g(z) . We first show that
G(p) has no poles in the complex plane cut along the negative real axis, and
that G(p) is analytic everywhere except on this axis for at the origin it
has a branch point. To prove this, we first note that

z0

-Ei(-z)+(y+ln z) = f t-l(l-e-t)dt = - 5", (1.4)
o k=l k.k

x
Ei(x) = t-letdt x > 0 , (1.5)
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Ei(z) = Ei (ze tifl) iir = E L ze ih ) +Ei (ze -'Tj (1.6)

-ze Ei(-z) - 2F0(l,l;-z) k= z (-~z arg z I <3,/
k=o (1.7)

In (1.4), y is Euler's constant, and in (1.5) the integral is a Cauchy
principal value. Also in (1.7) and in the sequel, standard generalized hyper-
geometric notation is used. Thus

pFq .al'a2'''a.z) = pFq(al,a 2 ,...ap;bl,b 2 ,...bq;z)P ibl,b2,...bq

p
= F (ai)kzk

}- Z i1 , (a) r(a+k) (1.8)
k=o q r(a)

iT (bi)kk!
i=l

For further discussion of hypergeometric functions, see [6].

Now let

h(z) = 1 + 1 (2z)e 2 zEi(-2z) (1.9). 2

and consider the contour described by the figure below.
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Here let r1 be the small circle with radius r , and r2 the large circle
with radius R The complex plane is cut along the negative real axis so
that along BC ,arg z is n , while along EF ,arg z is -T . Then the
number of zeros of h(z) which lie within the contour is (27)-r times the
change in phase of h(z) as z traverses the contour. Now the change in
phase is

[arg h(z)] - [arg h(z)]r + [arg h(z)IReiT + [arg h(z)] ReiT (1.10)

As R-.m and r-*0 , the first two terms vanish since lim0 h(z) = Jim h(z)

Now a representation for h(xeilI follows from (1.6), and so the
last two terms of (1.9) become

2nTlim. [r e2 R

r-.O c tan xe,2__ - 0 . (1.11)L ~1-xe' 2Xi(2x)j
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Thus g(z) has no zeros in the complex plane cut along the negative real
axis.

It readily follows that the path of integration for (1.3) may be de-
formed into the path QAP with R--' and that the value of this integral
taken over the complete circuit APBCDEFCA is zero. The integral over the
arcs PB and FQ tend to zero as R-o- , and so we have the loop integral
representation

(o+)
g(z) - J2 ePzG(p)dp ,(.2

where r means that the path of integration is FEDCB with r-O and
CD

R-- .* We readily find the integral representation

g(z) = x f'dx, 
Re(z) > -2 (1.13)

0 fllxe.2xEi(2x) }+ 2x2e_4X

where Re stands for the real part.

At this point, it is helpful to give a synopsis of the material in
the remaining sections. In Section II,we develop the usual power series solu-
tion of g(z) for small z , and an asymptotic expansion of g(z) for large
z . It is the method of constructing the power series solution that motivates
our idea of using rational approximations to approximate G(p) which in turn
leads to an approximation of g(z) . The method of approximation including a
complete error analysis is the subject of Section III. Numerical examples are
given in Section IV.
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II. THE CONVERXIONAL SOLUTIONS FOR SMALL AND LARGE VARIABLE

To get an expansion in ascending powers of z , we combine (1.7) and
(1.2) and formally develop G(p) as a series in reciprocal powers of p .
Termwise inversion then produces the desired result. Numerous examples illus-
trating this technique have been given by Goldstein [7]. See also Carslaw and
Jaeger [8]. We find that

1 • () kakzk
g(z) = 2kkl o

k-l
ak = (k+l): + -5 (k-r)!ar (2.1)

r=o

Further numerical coefficients are given in the following table.

k ak k ak

1 3 6 8431
2 lU 7 62391
3 47 8 5 24495
4 231 9 49 60775
5 1303 10 522 23775 (2.2)

The series (2.1) converges quite slowly. Indeed, it is clear from (1.13) and
a theorem in complex variable theory that (2.1) converges only if zj < 2 .
Thus, if z = 1 and we use 11 terms of (2.1), the result is only correct to

2
about five decimals. Again, at z = 1 , we only get accuracy to about 2
decimals.

To get an asymptotic expansion of g(z) , we use (1.4) to develop an
ascending series for G(p) , and then employ (1.12). For other examples of this
approach see Carslaw and Jaeger [8], and Ritchie and Sakakura [9]. We have
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4G(p) = 1 + pe 4 (ln p4e) - p2 e 4 (2 + e2I(ln p4e)2}

+ P3 e2P1 + 4e2P(ln p.'c) + e4p(1n p4-e)*3

e =,y + in 2 (2.3)

Now

(00)
b, = /.L eXPpU-ldp = r(v)sin o R(u) , 0

?- i 'I V

bo = 1 , bn = 0 , n a positive integer , (2.4)

and

(0+)
(o= 1 e lppn-l(ln p)mdp = (amb/

n=n

c ln = (-nnl)', 2n = ()*n1' (n)_in A

),n Xn I.

C3n = (nl)! [3 {*(n)-Jn X2 + 3*'(n) - T2 , etc. , (2.5)
Xn

where #(z) is the logarithmic derivative of the gamnma function 1(z) and
*'(z) is the derivative of #(z) . The union of (2.3) and (1.12) gives

1 _ In (.2 6

4(z+2) 2  (z+4) 3  (z+4) 4

!+2 .In(z+6+ fl (z i2(z+6 )4 6 3 L5-

+..., 0<z-*w. . (2.6)

7



Note that (2.6) is not very effective unless z is quite large, say z > 6
Also, the formula is deficient since a -useful estimate of the error is not at
hand, although this drawback is not too serious.

The representations (2.1) and (2.6) are therefore only useful for z
very small or z very large. There is need for analytical representations to
cover the intermediate range. We shall show how rational approximations to
-Ei(-z) can be effectively and economically used to approximate g(z) for z
ranging from the origin into the region where use of the asymptotic expansion
is meaningful.

III. SOLUTION BY RATIONAL APPROXIMATIONS

It is known that the exponential integral may be approximated by a
sequence of rational functions cormonly known as the Pad6 approximates or the
Gaussian convergents. These approximations are related to the asymptotic ex-
pansion for -Ei(-z) , see (1.7), and for the same number of terms give much
more accuracy than the asymptotic expansion. Indeed, the rational approximates
can be used effectively in regions where the asymptotic expansion is useless.
Thus, if the Pad6 approximates are used to represent G(p) , then an approxima-
tion to g(z) is readily composed, and we should expect results valid in a
much larger domain of z values than that derived using the asymptotic expan-
sions. This is truly the case, and we now take up the procedure using rational
approximates.

In [ill we showed that the incomplete gamma function which includes
the exponential integral as a special case can be approximated by a sequence
of rational approximates together with a remainder term. An asymptotic esti-
mate of the error was developed and used to prove that if the variable z is
fixed, larg z I< TY , then the sequence of rational approximates converge.
That is, the error approaches zero as the order of the approximation n is
increased. The asymptotic estimate of the error is quite realistic. However,
the error formulation suffered from the fact that it was not uniform in z.
This deficiency was corrected in a recent study 1101. We summarize below our
findings for the exponential integral. As previously remarked, similar results
are available for the incomplete gasuna function in the reference cited. We
have

-zezF-i(-z) = Vn(z) + Tn(Z)

Vn(z) -E ,z Tn( ) Un(z) (3.1)
Fn(z) Fn(z)



where

n (-n)k -n~k,l I Z
En(z) = T-___ 2F2 -+k24 k)k=•-o (l)' .•k 2k

kn (_) (
z-r) (3.P)

k=o r=k (r~l) (

and Fn(z) is the 2 F2  in (3.2) with k=o whence

Fn(z) = 1Fl(-n;2;-z) (3.3)

which when suitably normalized is the Laguerre polynomial Il)(-z) . Also

Un(z) = -zez f (t-z)lt-n'2e-tdt = -n'$(n+l,O;z) (3.4)
z

where #(a,c;z) is a confluent hypergeometric function, and

Unz) ., -n'z-n-l'.Fo~n+l,n+2;-z"l) I1", lz-- arg z I< 3"/2
(3.5)

Both En(z) and Fn(z) satisfy the recurrence equation

(n+2)Fn+l(z) = (z+2n+2)Fn(z) - Fnil(z) (3.6)

Some further useful relations are

[zD2+(z+2)D-n] Fn(Z) = 0 , D = d/dz Y (3.7)
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zDFn(z) = n [Fn(Z)-Fn..l(z)] , (3.8)

zDEn(z) = (z+n+l)En(z) - nEnil(z) - zFn(z) (3.9)

Let

z = 4(n+l)sinh2 0. (3.10)

where m, is real and positive if z is real and positive. To be explicit, it
is convenient to write

sinh2 a = pei@ , p > 0 ,IeI< '

= , and 6 real , 0 16, <6 </2
(3.11)

so that

cash = Ll+p+ [(i+,)2-4p sin2 @/2

£1

sin 5 cosh p P sin e/2 , cos 6 sinh 8 = p2 cos e/2 (3.12)

Then

_2rrze z-,_(n+l)(-Ic+sinh 2a.) i+ P1() + P2 (c)+O(n-3)]n+l ,(n:+1)2Li_ PI(-) + P2 (a) +0(n 3 )Jn+l (n+1) 2

P =(c) (96 coth3 C.) [9 coth4a -6 coth2c,+5 , (3.13)

Equation (3.13) concluded on next page.
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= (18432 coth6 ) 1[ coth8 a +180 coth6cv. +558 coth4% -924 coth2 a +3851,

(3.13)

uniformly in z for n large and l arg zI <T . Under these conditions it
is clear that

lim Tn(z) = 0 (3.14)
n--•ow

Thus the rational approximation converges everywhere in the complex plane
except when z is on the negative real axis. This is to be expected since
the zeros of the Laguerre polynomial Fn(z) lie on the negative real axis,
and obviously the rational approximates cannot be used within sufficiently
small neighborhoods of these zeros. As a remark aside, in [10] it is shown

that, if n is fixed, z = -x , and x is sufficiently large, then Vn(-x)
may be used to approximate xe-xEi(x) . Thus the asymptotic expansion for
xe-xEi(x) , see (1.7), and Vn(-x) exhibit the same behavior. Indeed, vith
n fixed, we can show that

lim xnTn(-x) = 0

This follows from an asymptotic representation for Tn(-x) which is similar
in form to (3.13). For further details, see [lo].

Another rational approximation for the exponential integral is given
by

-zezEi(-z) = Sn(z)+Rn(z) ,

Sn) - , (z Wn(z) (3.:b)Nn(z) ' 
Nn(z)

11



where

n-i

Mn(z) -z 7- ( 'n)1 . 2F2  k+l, 1

k=O (k+l):(k+l) 2+k,2+k

n n (_)r (n) -)
Z (.)kzk Z_ r) (r-k' (3.16)

k=1 r=k r(.

and Nn(z) is the 2 F2  in (3.16) with k = -1 , so that

Nn(z) = iFl(-n;l;-z) • (3.17)

Also

Wn(z) = zez f (t-z)nt-n'le-tdt = n.z*(n+l,l;z) . (3.18)
z

Both Mn(z) and Nn(z) satisfy the recurrence equation

(n+l)Nn+1 (z) = (z+2n+l)N~n(z)-nNnl(z) (3.19)

and (3.9) is valid if En(z) and Fn(z) are replaced by Mn(z) and Nn(z)
respectively. Also, Nn(z) satisfies (3.8), and

[zD2+(z+l)D-n ]Nn(z) = 0 (3.20)

A formula for Rn(z) which resembles (3.13) can be given., However, it is
convenient to exhibit a formula which depicts the relation between Rn(z) and

Tn(z) . Thus
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Rn(z) -- Tn(z)exp [2c+ tanh c, + (tanh m)(2cosh 2 v+l) +)(n-3)

I 4(n+l) 48(n+l)2 cosh2 a

X I cotha + coth2 a +(1 p l(C) coth v,
4(n+l) 32( n+1)2 (n+l)2,1 8

+ 1 cotii c,- 2tanh ca+ 5tanh3 l On) (3.21)
64 cosh 2 a L JJ J

whence Rn(z) enjoys the same convergence properties as Tn(Z)

With these preliminaries out of the way; we now pass on to applica-
tion of the rational approximates of Ei(-z) to approximate the solution of
(1.1). Combining (1.2) and (3.1), we can write

1 Tn(2p)
G(p) = Gn(P) - 2

Gn(p) = 1 [ Fn(p)-En(2p)] (3.22)
2 [2Fn(2>P)_En(2P)1

Thus G n(P) is a rational approximation to G(p) . Let gn(z) be the inverse
transform of Gn(p) . Then gn(Z) is an approximation to G(z) , and

G(z) = gn(Z)+cn(Z)

en(z) = -(41i) -1 c+ir' eZPTn(2p)dpCaZ):"(rr) c-i [2+2pe2p Ei (.2p)] [2+2pe2PEi (.2) +Tn (2p) ]

(3.23)

The numerator and denominator polynomials of Gn(p) follow from (3.2)., Clearly
they are easy to generate since each satisfies (3.6) with z replaced by 2p

13



Gn(p) is readily decomposed into partial fractions, and by inversion gn(z)
is a sum of exponential functions. Thus

n
Gn(P) = - ak

k=1 P+Xk

n _k
n(z) = ake , gn(O) = 1/4 • (3.24)

k=l

Another approximation follows from (3.15), and for this, the equations (3.22)

(3.24) hold with obvious change of notation.

We now prove that the approximation process is convergent. That is,

if z is fixed, larg z I< n , then lirn e(z) = 0 . We have already shown
n--

that h(p) , see (1.9), has no zeros in the complex plane cut along the nega-
tive real axis, and obviously there are no zeros in the right half plane. Let
c be fixed. If c is sufficiently large, the asymptotic expansion of h(p)
which follows from (1.6) - (1.7) and the asymptotic form of Tn(z) , see

(3.13), show that 2h(p) + Tn(2p) has no zeros on or outside a semicircle of
radius c with center at the origin which lies in the right half plane.

Indeed, since

2h(p) - 1, + - -,- + 0o(p-3 ) , 1p-" , Iar' Pl < p 3/22 2p2

to prove convergence, it is sufficient to consider the integral

c+ik
6n(z) = - i lim k An(P)dP

R-*•->cik

An(P) = peP(z+2)-2(n+l)(2c+sinh 2a) , sinh2 a = . (3.25)

14



Let CI be the path of a quarter circle with center at the origin and radius

cI > c which lies in the upper right half plane. Let C2  be the imaginary

axis extending from the point icI to iR . Then

6n(Z) = Ii+I2 2

11 = 2Re f.i j A n(P)dP} 12 21Mlm J urL/n(P)dP1

I C1  JR-= C2 (3.26)

where Re stands for the real part and Im stands for the imaginary part.

We consider I, first. Along C1 , p = cleiO so that

TT/2
I 1 = 2cj Re exp 2i8+cl(z+2)eie-2(n+l)(2a+sinh 2c,) d@

sinh2 Cy c . (3.27)
2(n+l)

We now let n be fixed but large with respect to cI . Then

1

cosh Cc,. 1+ + e c e2 +e

2(n+l) - 4(n+l) 32(n+l) 2

sinh 2m = 2 + 4(n+l) + O(n-2)

2a = 2 le [l 4 _ _ + O(n-2 ) (3.28)
2(~)1-2(n+) 17

15



and

2(n+l)(2•4.sinh 2a) = 4 2cl(n+l e L 1 +ln + O(n2)]
1?(n~l)

(3.29)

Since 0 5 P!r. /2 , we have

Re {2(n+l)(2a+sinh 2o) }! 4[cl(n4-1)] [1 + 0(n-)] (3.30)

and as z and cI are fixed, it is clear that lir I1 = 0
n-*c

For 12 , we let p = iq along C2 . Then

12 = -21m lim I qeiq(z+2)-2(n+l)(2a,+sinh 2a )dq
IR- c 1  J

sinh2 C" .2(qel (3.31)2 (n+l)

We suppose that 0 < arg z < TT so that in (3.31), eiq(z+2) is al.ways
bounded for cI ! q • It is convenient to split the range of integration
into two parts. The first from cI to Rl.= 4(n+l) and the second from R1
to R . For convergence, it is therefore sufficient to consider the integrals

13 = Re I qe-2(n+l)(2a+sinh 2e)dq}
[cl

= Re I qe-2(n+l)(2c,+sinh 2a)dq (3.32)Rl
lR1 -1

16



Now apply (3.11) - (3.13) with TTr/2 and p =qJ2(n+l) .Then

2(n+l)Re(sinh 2a,) 2 2[( n4l)q]2 [(J+P2P I 3.3

e-2(n+l)Re(2Oa) = (l+p2)-2+O+2 ~ {(1+p2)-2LP2 z33

For the evaluation of 13, 0 < pCl p2. In this casie
2(n+1)

= {l + (-442c(n+l)~

lirn I< [.(nl2c) 4[cen1J =0. 36

2 J~2
n~ C~

17



In 14 , let R--c, and put q = 2(n+l)t . Then

14 = 4(n+l)2Re {f te-2(l)(,+sin 2c,)atl , sinhi2  = tell/2

2J (3.37)

Thus (3.33) and (3.34) apply with p = t and 2 t t < w In this case

e-2(n+l)Re(2•y) C (4t)-2n-2 (3.38)

Also 2(n+l)Re(sinh 2w,) • 0 for all t , 2 • t : . Hence

<D

14' (a+,) 2 fP dt (n+1)2

22n+2 2 t2n+1  n.2 4n+3

lim 14 = 0 , (3.39)
n-oP

and the proof of convergence is complete. A similar argument shows that the

approximation technique based on (3.15) also converges. In this connection,
see (3.21).

We have attempted to develop a useful and realistic approximation for

Cn(Z) so that one could determine, a priori, for a given z the value of n

required to achieve a given level of accuracy. Some preliminary results in

this direction are available, but the analysis is far from complete, and we

defer further comments for a later report. It is pertinent to remark, however,

that numerical values determined by the approximation technique can be used to

give pragmatic estimates of the error. This and much more are brought out in

the following section.
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In Table I, we tabulate t-le-tdt , its rational approximation
z

(see (3.1)), the exact error, and the approximate error according to (3.13).

The data are developed for z = 2ei(P and n = 4 . Note that the error formula
for Tn (z) is quite remarkable for it is very realistic even for small n

TABLE I

S= 2ei fJt-le-tdt z.4.zv
( z 4z

0 4.89005"10-2 4.89190.10-2

-T/4 -3. 95846" 0 2 -8.22921i 10-2 -3. 95652.10- 2 -8.22414i- 10-2

rr/2 -4.22981"10-1+3.46167i•10- 2  -4.23980.10-1+3.43682i.10-2

3ý/4 -2.16947 +0.31777i -2.12827 +0.36462i

z = zei_ z le'ZT4 (z) z-le-ZT4(z)
SExact Approximate

0 -0.185.10-4 -0.184-10-4

7,/4 -0.194-10- 4 -0.507i•10- 4  -0.194-10- 4 -0.507i•10-4
-a/2 0.999•10- 3 +0.248i•10" 3  0.996•10- 3 +0.249i•10- 3

3n/4 -0.412.10- 1 -0.468i-10- 1  -0.412.10- 1 -0.473i.10- 1

In Table II, we record the values of ak and Xk for n = 3(1)6
and in Table III we compare gn(z) with the "exact" g(z) for several values
of z. These data are based on the representation (3.1). Tables IV and V are
the same as I and II, respectively, save that the approximations are based on
(3.15). Here we use the notation ak*, Xk* and gn* , which parallels that
of (3.24). The "exact" values for z ! 5 are taken from a study by Fox and
Goodwin [11], who use (1.1) in a study of numerical solutions to integral equa-

tions. The value of g(z) for z = 6 was found from (1.13) by numerical
integration. It appears that the value of g(z) for z = 5 is a unit too

large in the last place. In Tables III and V, we also give values of 6(z)
for z = 4ýl)6 which are derived from the n = 4,5 and 6 approximates using
Aitken's 6 -process.
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TABIE II

n= 3 n= 4

k ak kk k ak Xk

1 0.09609 77 -0.71098 97 1 0.05937 40 -0.53891 09
2 0.14655 50 -1.89746 62 2 0.15882 37 -1.56937 11
3 0.007341 73 -3.89154 41 3 0.03138 23 -2.91402 74

4 0.00042 00 -5.47769 05

n=5 n=6

k ak kk k ak Xk

1 0.03979 98 -0.42941 92 1 0.02843 62 -0.35499 71
2 0.14295 32 -1.33416 55 -2 0.11865 90 -1.15071 93
3 0.06412 69 -2.40159 29 3 0.09292 31 -2.07864 32
4 0.00309 96 -4.20473 33 4 0.00973 90 -3.47492 24
5 0-00002 05 -7.13008 91 5 0.00024 17 -5.61773 46

6 0.00000 10 -8.82298 34

TABLE III

Sg 3(z) g 4 (z) g5 (z) g6 (z)_ 6(z) g(z)

0 0.25000 0.25000 0.25000 0.25000 0.25000
0.5 0.12515 0.12515 0.12515 0.12515 0.12515
1.0 0.06932 0.06941 0.06941 0.06941 0.06942
1.5 0.04161 0.04193 0.04197 0.04197 0.04197
2.0 0.02648 0.02716 0.02730 0.02732 0.02733
3.0 0.01188 0.01322 0.01363 0.01374 0.01378 0.01378
4.0 0.00567 0.00718 0.00783 0.00809 0.00826 0.00821
5.0 0.00267 0.00407 0.00483 0.00520 0.00555 0.00547
6.0 0. 00135 0.00235 0.00307 0.00350 0.00414 0.00391
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TABLE IV

n= 3 n= 4

k ak *Xk k ak *_k _

1 0.03668 99 -0.31385 -93 1 0.02025 70 -0.22504 61
2 0.18750 00 -1.50000 00 2 0.15173 03 -1.18873 16
3 0.02581 01 -3.18614 07 3 = 0.07630 34 -2.38574 42

4 0.00170 92 -4.70047 81

n=5 n= 6

k ak * k *k ak *Xk

1 0.01279 44 -0.17429 89 1 0.00880 86 -0.14178 99

2 0.11138 06 -0.96597 23 2 0.08145 38 -0.80353 59
3 0.11584 45 -1.98033 70 3 0.13290 86 -1.71581 14
4 0.00989 00 -3.55882 82 4 0.02597 15 -2.92720 02

5 0.00009 05 -6.32056 36 5 0.00085 32 -4.92022 14
6 0.00000 43 -7.99144 12

TABLE V

Z 9**(Z) 94*(z) g5*(z) g6 *(z) 6*(Z)g(z)

0 0.25000 0.25000 0.25000 0.25000 0.25000

0.5 0.12518 0.12515 0.12515 0.12515 0.12515
1.0 0.06971 0.06943 0.06941 0.06941 0.06942
1.5 0.04289 0.04210 0.04197 0.04197 0.04197
2.0 0.02896 0.02764 0.02738 0.02733 0. 02733
3.0 0.01639 0.01466 0.01403 0.01384 0.01376 0.01370
4.0 0.01092 0.00955 0.00875 0.00841 0.00813 0.00821
5.0 0.00774 0.00697 0.00625 0.00582 0.00524 0.00547
6.0 0.00560 0.00537 0.00484 0.00442 0.00282 0.00391
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As previously remarked, our formulation of the error in the approxi-
mation process is not in a convenient form for practical use. Since the ap-
proximate solutions converge and are easy to generate, it is suggested that
the numbers themselves be employed to apprise the accuracy of the process.
Thus if two or more successive convergents are evaluated, one can accept the
common digits as correct. Further, as shown in the above tables, Aitken's
62 -process is valuable provided n , the order of the approximation, is suf-
ficiently large. Note that in Tables II and IV, the 62 -process gives improved
values except for z = 6 in Table IV.

Another technique useful to assess the error is to compare the ap-
proximate entries for large z with values deduced from the asymptotic expan-
sion. If we use all the terms given in (2.6), then for z = 5 and 6 , we get
0.00509 and 0.00374, respectively. In our present example, the asymptotic
representation is deficient since an error estimate is not available, and it
is clear from the calculations that the asymptotic expansion is not suffi-
ciently reliable unless z is considerably larger than 6. Of course, had we
computed approximates for larger n , then we could take z larger whence
values deduced from the asymptotic representation would be more informative.

In our study, a further procedure to get improved values is to
average the corresponding entries in Tables III and V. This works because in
Table III the values are converging from below while in Table V, the values

are converging from above. Thus for z = 5 and 6 , we get the improved values
0.00551 and 0.00396, respectively. Of course, in practice it may not always
be possible to have rational approximations so that one can get convergence
from both sides. In any event, it seems that using only one sequence of
rational approximates with more entries for n would be more informative.
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